• Users Online: 103
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Ahead of print Current issue Search Archives Submit article Instructions Subscribe Contacts Login 
Year : 2015  |  Volume : 15  |  Issue : 1  |  Page : 2-7

Paracetamol-induced liver damage: Ameliorative effects of the crude aqueous extract of Musanga cecropioides

1 Department of Anatomy, School of Basic Medical Sciences, University of Benin, Benin City, Edo State, Nigeria
2 Department of Pharmacognosy, Faculty of Pharmacy, University of Benin, Benin City, Edo State, Nigeria

Correspondence Address:
S I Omoruyi
Department of Anatomy, School of Basic Medical Sciences, University of Benin, Benin City, Edo State
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1596-4078.171381

Rights and Permissions

Objective: The protective role of the aqueous stem bark extract of Musanga cecropioides against paracetamol-induced liver damage was investigated in Wistar rats using silymarin as a reference drug. Materials and Methods: The animals were randomly assigned into five groups of six rats each (A, B, C, D, and E). Rats in group A served as controls and received an equivalent volume of distilled water used to dissolve the extract. To effect liver damage, animals in groups B-E were administered paracetamol at 500 mg/kg body weight orogastrically for 14 days using a metal cannula. Animals in groups C, D, and E were simultaneously pretreated with silymarin at 25 mg, 250 mg, and 500 mg, of the extract, per kg body weight, respectively. The effects of M. cecropioides and silymarin were examined on hepatic marker enzymes; aspartate amino-transferases (AST), alanine amino-transferases (ALT), alkaline phosphatase (ALP), and total protein (TP). Antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT), and lipid malondialdehyde (MDA), as well as changes in liver histology, were also evaluated. The animals were sacrificed via cervical dislocation and blood was collected via cardiac puncture into plain bottles. Furthermore, liver tissues were excised and processed for routine hematoxylin and eosin staining. Results: M. cecropioides and silymarin produced significant (P < 0.05) hepatoprotective activity by decreasing the serum levels of AST, ALT, ALP, and lipid peroxidation marker, MDA significantly (P < 0.05) increased the levels of TP, SOD, and CAT except for the group administered 250 mg/kg of M. cecropiodes. Liver histology revealed the presence of vacuolations and mild chronic infiltrates of inflammatory cells in the livers of paracetamol treated animals. Pretreatment with silymarin and M. cecropioides extract produced a remarkable reduction in the severity of vacuolations. Conclusion: Crude aqueous extract of M. cecropioides protected against paracetamol-induced liver damage perhaps, by its antioxidative effect on hepatocytes, hence eliminating the deleterious effects of toxic metabolites of paracetamol.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded168    
    Comments [Add]    

Recommend this journal